
This is a PDF export of the talk slides.

You can find the original slides, incl. videos, here:
https://docs.google.com/presentation/d/16ZQMB
7OVc1fkPRG1K7rQIWCd5zYWTj1hTaeI2rAjZSo/edi
t?usp=sharing

https://docs.google.com/presentation/d/16ZQMB7OVc1fkPRG1K7rQIWCd5zYWTj1hTaeI2rAjZSo/edit?usp=sharing
https://docs.google.com/presentation/d/16ZQMB7OVc1fkPRG1K7rQIWCd5zYWTj1hTaeI2rAjZSo/edit?usp=sharing
https://docs.google.com/presentation/d/16ZQMB7OVc1fkPRG1K7rQIWCd5zYWTj1hTaeI2rAjZSo/edit?usp=sharing

Learning Robotics
Fundamentals with
ROS 2 and modern

Gazebo
Andreas Bihlmaier

The goal

Exploring robotics fundamentals - interactively
Hands-On Learning: Engage in practical,
hands-on experience with robotics
fundamentals through interactive simulation
tools.

Real-Time Visualization: Gain a deeper
understanding of concepts by visualizing
robot movements, sensor data, and
algorithms in real-time through interactive
plotting.

Risk-Free Experimentation: Mitigate risks
associated with hardware experimentation by
utilizing simulation environments, allowing
learners to experiment freely without fear of
damaging physical components.

Scenario Exploration: Simulate diverse
scenarios and challenges, providing learners
with a broad range of experiences that may
not be easily achievable in a physical setting.

Familiarity with Tools: Building familiarity
with ROS 2 and Gazebo during the learning
phase enables individuals to efficiently
contribute to ongoing projects or start new
ones.

The tools

Leveraging the ROS 2 and Gazebo ecosystem
ROS 2

● rclpy Python client library
● ros2 command line tools
● rosbag2 recording & playback
● PlotJuggler advanced plotting

● Not used in this talk
○ RViz 3D visualization
○ Turtlesim simple

simulation

Gazebo (modern)

● gz-physics physics engines
(Bullet, DART, TPE)

● gz-rendering rendering (OGRE)
● gz-sensors sensor simulation
● gz-gui GUI
● Many existing systems and

example worlds
● Custom systems (plugins)
● Fuel simulation models

Connectors:

● URDF and SDF
● ros_gz
● gz_ros2_control

https://docs.ros.org/en/humble/Concepts/Basic/About-Client-Libraries.html#the-rclpy-package
https://docs.ros.org/en/humble/Concepts/Basic/About-Command-Line-Tools.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html
https://plotjuggler.io/
https://github.com/ros2/rviz
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Introducing-Turtlesim/Introducing-Turtlesim.html
https://github.com/gazebosim/gz-physics
https://github.com/bulletphysics/bullet3
https://dartsim.github.io/
https://github.com/gazebosim/gz-physics/tree/gz-physics7/tpe
https://github.com/gazebosim/gz-rendering
https://www.ogre3d.org/
https://github.com/gazebosim/gz-sensors
https://github.com/gazebosim/gz-gui
https://github.com/gazebosim/gz-sim/tree/gz-sim8/src/systems
https://gazebosim.org/api/physics/7/physicsconcepts.html
https://github.com/gazebosim/gz-sim/tree/gz-sim8/examples/worlds
https://github.com/gazebosim/ros_gz_project_template/tree/main/ros_gz_example_gazebo
https://app.gazebosim.org/
https://docs.ros.org/en/humble/Tutorials/Intermediate/URDF/URDF-Main.html
http://sdformat.org/
https://github.com/gazebosim/ros_gz
https://github.com/ros-controls/gz_ros2_control

Learning about
math

Exploring math concepts in a robotics context
● The derivative of a function describes the

“instantaneous rate of change” of the
function.

● The time derivative of position is velocity
○ p’ = v

● The derivative of velocity is acceleration
○ p’’ = v’ = a

● Integrals can be seen as antiderivative.
● The time integral of acceleration is velocity

○ ∫a = v
● The integral of velocity is position

○ ∫∫a = ∫v = p
● In code, derivatives and integrals are

usually calculated numerically.

A more fun alternative to Python + matplotlib
There is nothing wrong with
getting a better understanding of
basic calculus using Python, e.g.
numpy + matplotlib (in Jupyter
notebooks).

One can get a sense for a constant
acceleration resulting in linear
velocity change that in turn results
in quadratic position change.

But it is much more interesting
and interactive using Gazebo and
PlotJuggler.

gz: Velocity v to Position x | PJ: x to v to a
Gazebo (gz) world with a simple mobile robot with
VelocityControl system and PosePublisher
system.

ros_gz_bridge publishes Twist from ROS to
Gazebo and Pose from Gazebo to ROS TFMessage.

ros2 topic pub sends Twist command.

PlotJuggler (PJ) subscribed to ROS TFMessage topic’s
translation.x with custom series for first
derivative v and filter for second derivative a.

M1: A gentle twist 1/2

Unless lower level controllers can properly
handle discontinuities in commanded twist,
commands should be acceleration limited
(even better also jerk limited).

The noise in velocity and acceleration is due
to (double) numerical differentiation.

Discontinuity in velocity v results
in “unlimited” acceleration a.
Also in “unlimited” jerk j = a’

Aside: It is easy to create
the world’s fastest robot
- in simulation.

v [m/s]

https://docs.google.com/file/d/14dipWBPtz5krb841AGsPlvd1-DHgQSi-/preview

M1: A gentle twist 2/2

def timer_callback(self):

 if self.state == self.State.ACCELERATE:

 twist.linear.x = min(self.linear_velocity, self.prev_twist.linear.x + self.linear_acceleration * self.timer_period)

 elif self.state == self.State.DECELERATE:

 twist.linear.x = max(0.0, self.prev_twist.linear.x - self.linear_acceleration * self.timer_period)

Learning about
physics

P1: Watch the ball drop in free fall

Paused “empty” world in Gazebo
with a sphere at z = 100 m.

PosePublisher system and
ros_gz_bridge as before.

ros2 bag record the topic.

Open bag file in PlotJuggler,
configure plot(s) and explore data
with the time tracker.

P2: Inertia and the inclined plane
The 3D inertia tensor for a solid
sphere of radius r and mass m is

The inertia for a solid cylinder of
radius r, height h and mass m is

via List of moments of inertia

What happens when both roll
down an inclined plane?

Aside: The unit matrix is not a good default value for robot links.

https://en.wikipedia.org/wiki/List_of_moments_of_inertia

https://docs.google.com/file/d/1dslCffx-e98vhWIrs6AuVnyfgRq6kTCE/preview

Learning about
robot physics

R1: The grandfather pendulum
Modified double_pendulum_with_base
with ApplyJointForce,
JointStatePublisher and
PosePublisher systems.

Here the lower_joint has
been made a fixed joint.
Single pendulum here.

The joints have no friction or damping.
Perpetuum mobile!

PlotJugger visualizing the periodic joint
position and XY plotting the lower_link.

Aside: Inertia parameters in standard model are completely off.
I’m sure there are reasons for the default - but they are not simulation realism.

https://docs.google.com/file/d/1Lkx27JYuaUCV-ym0a4xBKa9wD4XW04Cb/preview

R2: Friction and damping
<friction>: Static friction

Independent of joint velocity.

<damping>: Viscous damping

Relative to joint velocity.

https://docs.google.com/file/d/1JzqIGrurJw9Ego9RvpHqlyhZ_L_24r3o/preview
https://docs.google.com/file/d/1o25HZAqTOPi1qovArUJTOVXMevWymzzc/preview
http://sdformat.org/spec?elem=joint#dynamics_friction
http://sdformat.org/spec?elem=joint#dynamics_friction

R3: Inertia dependent on joint positions → M(q) 1/2

A heavily damped version of the double
pendulum with two revolute joints.
upper_joint as before, lower_joint
controlled via JointPositionController
system. Lower joint at position q2 = 0.

Starting from bottom position, applying a
torque of 50 Nm to the upper joint.

Settles at an upper joint position of 0.566 rad.

r1 = 0.5 m
m1 = 10 kg

r2 = 1.5 m

m2 = 3 kg

α =
0.566

τ = (r1 * m1 * sin(α)
 + r2 * m2 * sin(α))
 * g
 ≅ 50 Nm

R3: Inertia dependent on joint positions → M(q) 2/2

Lower joint at position q2 = π.

Settles at an upper joint position of 0.9 rad.

Lower joint at position q2 = π/2.

Settles at an upper joint position of 0.49 rad.

In summary,
seen from the
upper joint, the
robot inertia depends
on other joint positions
and the relationship
is non-linear:
q2 = 0 → α = 0.566
q2 = π/2 → α = 0.49
q2 = π → α = 0.9

r1 = r2 = 0.5 m
m1 = 10 kg

m2 = 3 kgα =
0.9

τ = (r1 * m1 * sin(α)
 + r2 * m2 * sin(α))
 * g
 ≅ 50 Nm

https://docs.google.com/file/d/1EGfghsyqHH6GrwMNLuHBmfbvhF9-yduj/preview

Learning about
control

Closing the loop on control

Thus far we have sent commands to Gazebo
to cause actions and observed the results.

Now we make use of data about the effects to
influence our actions.

Instead of combining already seen Gazebo
systems, we use ros2_control, more
specifically gz_ros2_control.

Note: As a consequence, the following example
requires much more infrastructure.

C1: Robots or stable pendulums
The ur_simulation_ignition
package uses the
ign_ros2_control/IgnitionSystem
(aka gz_ros2_control::GazeboSimROS2ControlPlugin)

for joint control.

It acts as ros2_control HW interface.
Commanding positions, velocities or
efforts and providing actual values back
to the (closed-loop) controller.

https://docs.google.com/file/d/1wdGPK-778ArG-DizGDKs6JLDspmCYSX4/preview

There is much more to explore
at the intersection of robotics
fundamentals, ROS 2 and
Gazebo … enjoy exploring it!

Thanks!

https://www.allisonthackston.com/articles/ignition-vs-gazebo.html

https://gazebosim.org/api/physics/7/physicsconcepts.html

https://github.com/
andreasBihlmaier/
robotics_fundamentals_ros_gazebo

https://github.com/andreasBihlmaier/robotics_fundamentals_ros_gazebo
https://github.com/andreasBihlmaier/robotics_fundamentals_ros_gazebo
https://github.com/andreasBihlmaier/robotics_fundamentals_ros_gazebo

